Colore e Colorimetria
Contributi Multidisciplinari

Vol. VII A

A cura di
Maurizio Rossi

Collana Quaderni di Ottica e Fotonica n. 20
Colore e Colorimetria. Contributi Multidisciplinari
Vol. VII A

Atti della Settima Conferenza Nazionale del Colore.
Gruppo del Colore – SIOF - www.gruppodelcolore.it
Sapienza Università di Roma
Facoltà di Ingegneria,
Roma, 15-16 settembre 2011

Comitato organizzatore
Fabio Bisegna – Sapienza Università di Roma
Franco Guglielmetti – Sapienza Università di Roma
Maurizio Rossi - Politecnico di Milano

Comitato scientifico
Tiziano Agostini | Università degli Studi di Trieste
Salvatore Assetta | Flint Group Italia SpA
Giovanni Baule | Politecnico di Milano
Giulio Bertagna | Osservatorio Colore
Fabio Bisegna | Sapienza Università di Roma
Monica Bordegoni | Politecnico di Milano
Mauro Boscarol | Colore digitale blog
Aldo Bottoli | Osservatorio Colore
Leonardo Ciocchini | CNR-IFAC
Osvaldo Da Pos | Università degli Studi di Padova
Maria Luisa De Giorgi | Università del Salento
Andrea Della Patria | INO-CNR
Mario Doci | Sapienza Università di Roma
Patrizia Falzone | Università degli Studi di Genova
Marta Fibiani | CRA-IAA
Simonetta Fumagalli | ENEA
Davide Gadia | Università degli Studi di Milano
Marco Gaiani | Università di Bologna
Marisa Gaiatari | Politecnico di Milano
Alessandra Galantoni | Università degli Studi di Verona
Anna M. Gueli | Università degli Studi di Catania
Franco Guglielmetti | Sapienza Università di Roma
Filippo Lambertucci | Sapienza Università di Roma
Nicola Ludwig | Università degli Studi di Milano
Lia Luzzatto | Color and colors
Mario Marchetti | Sapienza Università di Roma
Fulvio Mattivi | Fondazione Edmund Mach - IASMA
Paolo Mensatti | CRA-ING
Claudio Oleari | Università degli Studi di Parma
Sergio Omarini | INO-CNR
Antonio Paris | Sapienza Università di Roma
Ferruccio Petrucci | UniFE/INFN FE
Marcello Picollo | IFAC-CNR
Angela Piegari | ENEA
Renata Pompas | AFOL Milano-Moda
Fernanda Prestileo | ICCROM Roma
Alessandro Rizzi | Università degli Studi di Milano
Maurizio Rossi | Politecnico di Milano
Paolo Salonia | ITABC-CNR
Raimondo Schettini | Università Milano Bicocca
Daniela Sgrulletta | CRA-QCE
Alberto Seassaro | Politecnico di Milano
Stefano Tubaro | Politecnico di Milano

Segreteria Organizzativa
Laura Monti – Sapienza Università di Roma
Andrea Siniscalco – Gruppo del Colore
Indice

 Analisi spettrofotometriche per la determinazione delle caratteristiche di visibilità e di resa del colore di pellicole solari applicate a superfici vetrate 15
 F. Asdrubali, G. Baldinelli, S. Schiavoni, F. Bianconi, S. Saetta

 Il colore del suolo e i fenomeni di weathering 23
 Anna M. Gueli, Carmelo Monaco, Gloria M. Ristuccia, Giuseppe Stella, Sebastiano O. Troja

 Alcuni punti critici nella pratica colorimetrica 30
 Gianfranco Cerruti, Luca Tomasina

 La formulazione del colore mediante spettrofotometria nel visibile con doppia modalità di misura: trasmissione e riflessione su fondo bianco 41
 Salvatore Asselta

 Twilight Zone del colore 47
 Marco Carpiceci

2. Il colore in relazione a illuminazione, metamersimo, adattamento, costanza cromatica, apparenza, illusioni, memoria cromatica, percezione in ambienti extra-atmosferici……55

 Il colore nello spazio extra-atmosferico 57
 Susanna Laurenzi, Margherita Marchetti, Samantha Ianelli, Mario Marchetti.

 L’estetica in odontoiatria: valutazione colorimetrica della gengiva peri-implantare 65

 L’indice di resa cromatica: misura base ed approcci innovativi 71
 S. Fumagalli, F. Bisegna, C. Bonanomi, S. Rasheed, A. Rizzi, F. Musante, M. Rossi
3. Il colore nella progettazione: architettura, arredo, comunicazione, cosmesi, design, grafica, moda e piani del colore..75

Biotrend design. Tintura naturale come valorizzazione delle diverità biologiche, culturali e sociali 77
Pamela Visconti

Colore e Materia nel Progetto di Architettura 83
Massimo Zammerini

Colore e wayfinding: una sperimentazione all’Ospedale San Paolo di Milano 91
Salvatore Zingale, Cristina Boeri, Marilisa Pastore

Riqualificazione leggera di spazi pubblici e riappropriazione del “terzo paesaggio” 97
Alessio Patalocco

Introduzione a un dizionario dei colori in architettura 105
Giovanni Brino

Tessuti luminosi: dalla seta ai Led 113
Renata Pompas

Everchanging. Color design guide for Centreville, residential buildings of Dongbu Corporation, Seoul, South Korea 119
Federico Picone

Sviluppo di tecnologie industrializzabili per l’anodizzazione a disegno del titanio 123
Paola Garbagnoli, Maria Vittoria Diamanti, Barbara Del Curto, MariaPia Pedeferr

Il senso dei materiali 131
Sabrina Lucibello

Il colore globalizzato 139
Lia Luzzatto

Luce e colore: un rapporto critico 145
Chiara Bertolaja

Il colore come driver cognitivo dello spazio urbano 151
Francesca Cattaneo

Il Progetto del Colore Funzionale: studiare, scegliere, applicare il colore per umanizzare gli ambienti sanitari 159
Daniela De Biase, Gaia Battistini, Tiziana Iacobacci

Coloured verb list splashing into exhibition design. Nuove verifiche paradigmatiche 167
Marco Borsotti

Il Nessun Dorma di Chen Yifei a Pechino: trionfo di luci e colori per una perfetta sintesi di musica, pittura e architettura 175
Saverio Ciarcia
La cura per le cose: il design sensoriale 183
Eliana Lorena

Il colore come materia di progetto della nuova pelle architettonica. Schermi, interferenze, metamorfosi 189
Raffaella Trochchianesi

Caratterizzazione del colore sui rivestimenti zincati tramite le curve di riflessanza spettrale 199
S. Natali; V. Volpe; L. Zorita

Ornamento, delitto e colore 207
Fabio Colonnese

La “Lucicultura” in Italia negli anni ’20. Luci e colori per una nuova immagine urbana 215
Carlo Biagini, Michelangelo Fabbrini

Architettura e impermanenza 223
Rocco Converti

Architettura, colore e psiche. Il colore come elemento definitorio del fenomeno transazionale negli spazi di vita estremi 229
Rosario Marrocco, José Mannu

La costruzione del colore - Il colore della costruzione. Quali contesti per le architetture della città contemporanea 238
Filippo Lambertiucci

La caratterizzazione degli spazi interni a mezzo del colore. L’architettura inglese del XVIII secolo 245
Pisana Posocco

La ricerca della terza dimensione del colore. Le sperimentazioni nel progetto degli edifici universitari e della residenza per studenti 251
Carlo Maggini

Linee guida per il Piano colore della città di Milano: proposta per un Piano Attuativo d’Ambito 259
Francesca Valan

La solidità del colore in architettura Scale dei grigi, metodi di prova e strumenti di valutazione dell’alterazione del colore del prodotto edilizio 265
Gaia Mussi

La Fisiologia dei colori di Filippo Lussana nella storia delle sinestesie 270
Dina Riccò

4. Il colore nell’arte, nella cultura, nella rappresentazione e nel disegno……………….275

Le trascrizioni del colore dall’idea al modello geometrico 277
Giampiero Mele
Alcune osservazioni sulla concettualizzazione linguistica del colore 285
Alina Kreisberg

Il colore come performance: dal testo alla rappresentazione visiva 291
Pierpaolo Marcaccio, Paola Taddei

Modi di Dire sui Colori nella Lingua Italiana 295
Giovanna Siervo, Stefania Chiacchiararelli, Paolo Bonaiuto

“Trattazione di uno studio sul colore”: un inedito del pittore Gianni Maimeri 303
Sandro Baroni, Anna Maimeri, Paola Travaglio

De coloribus: prima edizione di un trattato ellenistico-romano sulla fabbricazione di colori 311
Giulia Brun

Lettura dell’architettura contemporanea attraverso il disegno e la rappresentazione cromatica manuale. Il Museo Nazionale delle Arti del XXI secolo di Roma 319
Emanuela Chiavoni, Livia Fabbri, Francesca Porfiri, Gaia Lisa Tacchi

Medium o messaggio? Episodi limite della riproduzione a colori di opere d'arte 327
Daniele Torcellini

La policromia dell’Ara Pacis e i colori del Campo Marzio settentrionale 333
Simone Foresta

Il progetto del colore: sperimentazione e rappresentazione al Laboratorio di pittura murale del Bauhaus 341
Michela Rossi

Il colore nella didattica del disegno nel XIX secolo a Cagliari 349
Paola Casu

Colore e luce nella rappresentazione digitale dell’architettura 357
Cristiana Bedoni, Laura Farroni

Il colore alle origini della video arte fra sperimentazione e resistenze 363
Anna Mazzanti

Architettura, colore e filosofia. Lo spazio tra materia e spirito di Rothko e Barragán nella filosofia di Schelling 371
Elio Cappuccio, Rosario Marrocco

Che cosa ci insegnano gli artisti 379
Giusy Petruzzelli

Traduzioni cromatiche: problemi di leggibilità e percezione 386
Maria Linda Falcidieno, Luisa Cogorno
5. Il colore nel settore dei beni culturali: archeometria, coloriture, sintassi architettonica, materia, tecniche di conservazione, identità territoriali, restauro, valorizzazione dei beni culturali……395

Giallo Pompeiano 397
Silvana Carannante, Francesca Civetti, Sergio Omarini, Filomena Schiano Lomoriello, Peppe Zollo

La misura del colore come mezzo di valutazione del danno di oggetti esposti alla luce in ambiente museale 402
Laura Bellia, Carla Di Martino, Gennaro Spada

Problemi nella determinazione di concentrazioni di pigmenti pittorici con spettrometria a fibra ottica 410
Davide Pandini, Nicola Ludwig, Marco Gargano, Annalisa Moneta

Non solo allumina: caratterizzazione scientifica delle lacche pittoriche rosse 416
Claudio Falcucci, Simona Rinaldi

Confronto tra tecniche spettroscopiche per il monitoraggio del degrado di vernici pittoriche trasparenti 424
Veronica Marchiafava, Marcello Picollo, Costanza Cucci, Susanna Bracci

L’analisi colorimetrica a supporto dell’intervento di restauro sui mosaici della Villa Romana del Casale di Piazza Armerina 429
F. Prestileo, M.F. Alberghina, S. Schiavone, L. Pellegrin4, G. Meli, D. Perrone

Il Restauro digitale del colore: esperimenti e confronti sulla memoria teatrale degli anni Settanta e Ottanta 437
Desirée Sabatini, Alessandro Rizzi

Ulteriori valutazioni sull’impiego della principal Component Analysis su dati colorimetrici di tessere musive pavimentali 443
M. Alberghina, R. Barraco, M. Brai, L. Pellegrino, F. Prestileo, S. Schiavone, L. Tranchina, T. Schillaci

Indagini sul viraggio dell’ocra gialla nei dipinti parietali dell’area vesuviana 449

Coloriture architettoniche: una ‘malintesa’ valorizzazione 457
Maria Grazia Turco

Ancora sul ‘colore’ note in margine ad alcune questioni di restauro 465
Maria Piera Sette

La policromia nei rivestimenti marmorei dell’architettura tardo cinquecentesca romana: qualità innovative del fenomeno e ricadute in ordine al restauro 475
Andrea Licciardello

Il colore digitale per la caratterizzazione del rilievo archeologico 481
Alfonso Ippolito, Carlo Bianchini, Francesco Borgogni, Luca J. Senatore
Linee Guida per il Restauro delle Quinte Urbane del Centro Storico di Santa Fiora. Criteri di rilevamento, analisi e restauro delle finiture degli edifici 489
Rossana Nicolò, Gaia Lisa Tacchi

Progetti colore: la diagnostica per il costruito 497
Margherita Bertoldi, Susanna Bortolotto, Davide Gulotta, Lucia Toniolo

Contributi al progetto percettivo - una proposta metodologica 505
Giulio Bertagna, Aldo Bottoli

Influenza dei parametri operativi sulle variazioni colorimetriche del Ti passivato 513
M. Cavallini, C. Lupi, L. Zorlea

Valutazione mediante misure spettrofotometriche della pulitura di reperti archeologici a matrice carbonatica 521
Anna Candida Felici, Elisabetta Giorgi, Francesca Matera, Valentina Palazzo, Mario Piacentini

Valorizzazione e conservazione delle opere d’arte attraverso un’appropriata scelta dello spettro della sorgente luminosa 529
Gianluca Scaccianoce

Specificazione del colore di provini di terracotta calatina 537
A. M. Gueli, A. Privitera, D. Fontana, E. Nicastro, G. Stella, S. O. Troja

Restauri di restauri. Riflessioni su alcune recenti coloriture romane 545
Marina Doci

Colore e architettura esistente. Riflessioni tra conservazione e progetto 553
Rossana Gabaglio, Mariacristina Giambruno

Il colore negli affreschi dei palazzi ottocenteschi. Un caso particolare nella Sardegna centrale 561
Claudia Pisu

Il ruolo del colore. Dialettica tra memoria e valenze architettoniche 569
Maria Letizia Accorsi

Spettroscopia in riflettanza per il monitoraggio di materiali pittorici contemporanei 576
F. Albertini, L. Boselli, E. Peccenini, V. Pellicori, F. Petrucci, F. Tisato

Il ruolo del colore nelle simulazioni per la progettazione illuminotecnica dei beni culturali 584
Franco Guglielmetti, Fabio Bisegna, Monica Barbalace, Laura Monti

La conservazione delle superfici dell’architettura storica e dei suoi colori come restauro critico-conservativo 591
Oliva Muratore

Il colore e l’architettura moderna 599
Alessandra Cerroti
Il testo e il contesto. Per una scrittura narrativa della facies urbanab attraverso le superfici e le cromie 604
Maria Vitiello

Fini valori modalità e contenuti teorici del rilievo del colore ai fini di riqualificazione e restauro del costruito: centri storici e facciate dipinte 611
Patrizia Falzone

L’esposizione museale “Colori proibiti”: trait d’union tra arte e scienza 619
Viria Rescina, Alessandro Monno, Giulia Germinario

Analisi cromatica e analisi all’infrarosso: tecniche a confronto per la documentazione, il monito-raggio e la diagnosi dello stato di conservazione del patrimonio artistico 627

Una estensione della colorimetria classica per la caratterizzazione di superfici e tessuti attraverso riprese multispettrali con una fotocamera modificata 633
Marcello Melis, Alice Babbi, Matteo Miccoli

6. L’insegnamento, la pratica, l’esperienza e la cultura del colore. La natura fisiologica e psicologica del colore, i meccanismi della visione nei loro aspetti fenomenologici e teorici. Deficienze e anomalie, aspetti clinici e biologici..641

Hermann Helmholtz e i concetti fondamentali della colorimetria 643
Mauro Boscarol

Un’esperienza per migliorare la percezione visiva e l’informazione sul colore urbano 647
Emanuela Lauri

Colour Design Edu.System. Un approccio creativo e sistematico all’educazione al colore per il progetto di design 655
Valentina Vezzani

L’uso del colore nella rappresentazione grafica della percezione visiva del quartiere castello di Cagliari 661
Claudia Pisu, Valentina Fais

Pigmento: un’esperienza pedagogica sulla sintesi dei colori 669
Giuseppe Burdo

Esperienza progettuale e pratica del colore: un metodo didattico contemporaneo 676
Silvia Rizzo

Le Camici Rosse dei Mille di Garibaldi: percorso di ricerca e didattica sui colori naturali. Non si può innovare senza ricerca e senza memoria 680
Paola Barzanò , Moira Brunori, Caterina Maioli, Laura de Cesare

Intrecciare i colori. Note di antropologia del colore 688
Riccardo Putti
7. Il colore di alimenti e bevande

Colori alimentari: tra realtà, desiderio e brand 699
Graziani Mariapaola, Mima Tora

Le regole per colorare il food e il beverage 707
Marina Mastropietro

Effetto della tecnologia sulla stabilità del colore nel prosciutto cotto 715
M. Bergamaschi, M. Franceschini
1. Introduzione

“Possediamo oggi scienza esattamente nella misura in cui ci siamo risolti ad accogliere la testimonianza dei sensi, nonché nella misura in cui li affiniamo, li armiamo e insegniamo loro a ‘pensare’ fino in fondo.” [1] (Friedrich Nietzsche)

Se la sensazione, feedback dell’”atto del sentire”, è la risposta ad uno stimolo esterno e rappresenta il luogo in cui il pensiero si incontra con la sostanza delle cose, i sensi sono il tramite tra l’organismo e la materia, e quest’ultima è l’interfaccia tra noi e l’oggetto. La sensazione si tramuta poi in percezione sensoriale, permettendoci di comporre una personale “immagine” delle cose. Tale immagine dipenderà fortemente dall’idea che di questo mondo materiale ciascuno di noi avrà elaborato negli anni per costruire la propria mappa cognitiva [2]. Le mappe cognitive daranno dunque senso alla percezione guidandola, per assonanza, nella definizione dell’immagine dell’oggetto.

prevalenza di uno dei sensi sull’altro determina un’immagine e un messaggio non univoco, inducendo il cervello ad un vero e proprio stress emotivo tanto che, come osserva Charles Spence - direttore del Crossmodal Research Group[8] del Dipartimento di Psicologia Sperimentale dell’Università di Oxford - nella situazione di contraddizione, la piacevolezza ricercata viene meno. L’esperienza percettiva globale diventa dunque un nuovo valore da raggiungere, ma non come insieme di sensazioni assortite, quanto piuttosto come ergonomia cognitiva per la costruzione di una vera e propria “Architettura Sensoriale”.

2. **Progettare i sensi**

Sulle caratteristiche estetico-sensoriali già da molti anni si concentra l’attenzione dei Centri di Ricerca e Sviluppo delle maggiori multinazionali, in particolare di quelle nel campo della cosmetica e dell’agroalimentare, che dedicano grande attenzione agli elementi cosiddetti “sensibili” del prodotto e specialmente alle sue qualità tattili (superficie, texture), visive (colore) e sempre più a quelle olfattive (fragranza). Vediamo alcuni esempi.

L’olfatto ci avvolge come una nuvola sensoriale. È il primo filtro tra noi e il mondo, il più spontaneo dei sensi: più a fondo della vista, prima del tatto, oltre l’udito; l’odore disegna nella percezione e nell’immaginario l’impressione più immediata e profonda delle cose e dei luoghi, sprigionando ricordi, creando l’appeal.

In particolare alcuni noti gruppi automobilistici, già da tempo hanno investito la propria ricerca sulle sensazioni olfattive, con l’intento di orientare il gusto del consumatore, realizzando un ambiente immersivo e totalizzante in cui tutti i sensi vengano stimolati per il conseguimento della piacevolezza. Il sistema di riferimento per il mondo auto, visto il crescente tempo che vi si tende a trascorrere, è l’ambiente domestico (la comodità del salotto di casa o la funzionalità della scrivania dell’ufficio), tanto che a fare la differenza tra un’auto e l’altra non sono più le elevate prestazioni quali la velocità, la cilindrata, i consumi e l’affidabilità – considerate come caratteristiche scontate e consolidate – ma la qualità estetico-percettiva degli interni e la possibilità di personalizzazione declinata su larga scala.

Il guidatore all’interno del veicolo è infatti bombardato da una multitutidine di aromi, più di cento odori differenti che si libran contemoperaneamente in uno spazio limitato: il legno o la plastica del cruscotto, il tessuto o la pelle dei sedili, la plastica o il metallo del volante o del cambio.

Come gestire in fase di progetto questa sinfonia olfattiva per restituire all’utente comfort e piacevolezza?

Il problema principale è che tale percezione, non solo può ricevere stimoli confusi e sinestetici da parte dei sensi, ma può essere influenzata da fattori di tipo culturali-ambientali e perciò non sembra univocamente definibile, misurabile e dunque “oggettivizzabile”. Al PSA Peugeot Citroën, si è ideata una metodologia che si basa sulla creazione di Carte di Identità Sensoriali – una sorta di “palette” simili a quelle realizzate per i colori - ottenibili individuando su base statistica cosa influenza e quali sono i fattori responsabili della reazione a determinati odori. Queste informazioni andranno poi interpolate con i fattori culturali che rendono ogni Paese differente anche nella percezione della gradevolezza. “Oltre agli odori intrinseci, molto importanti sono quelli provocati dalla benzina o dalla sigaretta”, ci spiega
Laurent Kirsch, capo del Passenger Compartment Ambience dell’Human Factors and Perception Department alla PSA Peugeot Citroën, “(...) quello che ci interessa è controllare gli odori nel corso del tempo, per sviluppare una fragranza che risponda alle aspettative del cliente e al tipo di veicolo, rimandando cioè ad una sensazione di comfort e benessere(...). Odori piuttosto neutrali rispondono in genere al maggior numero di preferenze”.

Il Centro Ricerche Fiat utilizza invece il Naso Elettronico, ovvero un insieme di sensori chimici in grado di imitare il comportamento del naso umano che, pur non essendo in grado di riconoscere e definire specifiche molecole chimiche, è tuttavia capace di registrare la presenza di odori in un ambiente e di riconoscerne la tipologia sapendo distinguere la minore o maggiore intensità della sua gradevolezza. Attraverso questo strumento si è in grado di qualificare gli odori dei materiali per interni, distinguendoli in base al materiale di rivestimento dei pannelli o dei processi di tintura/finissaggio. L’ambizioso obiettivo, in futuro, è quello di progettare l’odore di marchio e comunque l’odore degli interni in funzione del tipo di autovettura e delle preferenze dei clienti in base, alla nazionalità, all’età, al sesso, ecc.

Anche l’udito è ovviamente parte integrante di quell’Architettura Sensoriale di cui parlavamo e il mondo dell’automotive, perfettamente consapevole dell’importanza di questo senso, ha posto grande attenzione alla ricerca del comfort acustico.

Alcuni suoni sono da sempre stati associati all’auto: il ronzio del motore, il tonfo delle portiere, il “ticchettio” degli indicatori di posizione, il bip dei vari dispositivi di allarme. Quando il guidatore è al volante si trova di fronte a suoni provenienti da tre fonti principali: dal motore, ovviamente, ma anche dalla strada e dal vento. Ci sono poi alcuni “optional” come le sorgenti audio, le portiere, il freno a mano, le cinture di sicurezza, gli avvisi di velocità, i sensori per il parcheggio, ecc.

Grande attenzione è posta in special modo sulla percezione del rombo del motore all’interno dell’autovettura, che ha un forte impatto sulla sensazione generale e sul “carattere” dell’auto, ma anche al suono di chiusura delle portiere, in equilibrio tra il dare il giusto senso del peso – e quindi di robustezza dell’auto - e la sicurezza di aver chiuso correttamente. Tutto questo costituisce il suono globale e la qualità complessiva del veicolo. "La cosa più importante", afferma Vincent Roussarie capo del settore Acustica al PSA Peugeot Citroën, “è assicurarsi che i suoni diversi nel vano passeggeri si uniscano per creare un'armonia sonora. Il risultato ideale è una consonanza di suoni gradevoli che esprima un alto livello tecnologico.”

Il comfort è naturalmente assicurato anche dai sensi quali la vista e il tatto. Durante la guida, infatti, pur essendo concentrati sull’esterno, continuiamo a tenere le mani sul volante e a toccare il pomello del cambio o la leva degli indicatori di posizione, mentre il nostro corpo è sempre a contatto con il sedile. La percezione tattile è perciò estremamente importante perché quando tochiamo qualcosa ne percepiamo la solidità, la forma, la temperatura, la consistenza, la morbidezza, la ruvidezza. La scelta di una texture, di un tessuto, di una determinata materia plastica piuttosto che di una metallica, potrà influenzare fortemente il modo in cui l’oggetto o l’ambiente è percepito. Ecco allora che la scelta di particolari tessuti intelligenti perché in grado di autopulirsi e di mantenersi salubri nel tempo, essendo antibatterici, o di plastiche capaci di evitare sensazioni di freddezza o di durezza soprattutto in determinate parti
dell’abitacolo auto (come ad esempio nel cruscotto), entrano a pieno titolo dell’attività di progettazione.

Primo tra i sensi è comunque la vista tanto che colore e luce, sono di fatto considerati “materiali” da progetto sono dunque il colore e la luce. In particolare oltre che con cui progettare. In particolare oggi ricercatori e progettisti si sono sempre più concentrati sulla luce, viste anche le nuove possibilità aperte dalle tecnologie (e nanotecnologie) che, “Learning from Nature”, sono oggi in grado di riprodurre ed imitare il comportamento degli organismi viventi. Nascono così supermateriali in grado di autogenerarsi, autoriprodursi, autoalimentarsi, e di imitarne l’organicità non solo nelle forme, ma addirittura nel DNA. Molto si sta sperimentando intorno a fenomena della luminescenza, ovvero a quella particolare caratteristica presente in Natura e che consiste nell’assorbimento di energia (corrispondente ad una forma di radiazione) e nel suo successivo rilascio sotto forma di luce visibile (come accade per alcune specie di fungo, per le meduse, per le lucciole. A partire da questo input, Loop.ph[9], uno Design Research Studio londinese (supportato dall’Audi Design Foundation and Technology Strategy Board, il Medical Council, il Leverhulme Trust), ha sperimentato “Digital Down”, una finestra cieca ispirata al ciclo della fotosintesi clorofilliana che reagisce alla luce attraverso una superficie reattiva in grado di rispondere e modificarsi in base alla luminosità dell’ambiente circostante, stampata con pigmenti elettroluminescenti (Digital Down varia la propria illuminazione – facendo crescere il disegno floreale – a seconda del variare della luminosità ambientale). Altro esperimento molto interessante è Walls With Ears, un tessuto in grado di reagire al livello di rumore, variando l’intensità del colore e dell’illuminazione; o anche Light Sleeper, un cuscino con sveglia-allarme integrata e che, per ridurre gli effetto del jet, simula un’alba naturale agendo sul nostro orologio biologico per aiutarci a risincronizzarlo.

Sempre sulla luminescenza lavora Jonas Samson [10] che realizza Light Emitting Wallpaper, una particolare carta da parati luminescente con funzione, oltre che decorativa, anche di illuminazione d’ambiente e, quando attivata, la superficie, sottile e bidimensionale, si trasforma in tridimensionale.

3. Il ruolo del progetto

Il design - o meglio l’industrial design inteso come “attività creativa il cui fine è determinare le qualità formali degli oggetti prodotti industrialmente”, Tomàs Maldonado, Disegno industriale: un riesame, Feltrinelli, Milano 1992, e come sintesi di quattro momenti: il progetto, la produzione, la vendita e il consumo, Renato De Fusco, Una semiotica per il design, Francoangeli, Milano 2005 - riveste in tutto ciò un ruolo primario, essendo l’unico processo in grado di costruire questa Architettura Sensoriale, e di trasformare i bisogni in artefatti e i risultati della ricerca scientifica in prodotti fruibili. Nello specifico è il “design sensoriale” a guidare verso questa sinfonia di sensi. Il design sensoriale pone come elemento chiave del progetto la sensazione, nel consapevole tentativo di riuscire a produrre una sorta di spaesamento semantico e di ricercata piacevolezza percettiva. Il progetto, dunque, come attività di bricolage non solo in grado tradurre il “fantastico tecnologico” in una immagine reale e non solo enfatizzante del pensiero tecnico-scientifico; ma anche il progetto come mezzo di interpretazione ed esplorazione del reale-possibile.

Fondamentale per il design sarà allora agire non solo sulla forma o sulla funzione, ma anche sui materiali che, come già detto, sono l’interfaccia attraverso cui tocciamo, vediamo, sentiamo gli artefatti.

Ecco allora che il design entra prepotentemente in settori fino ad oggi terreno esclusivo di una progettazione di tipo tecnico-ingegneristica come ad esempio il
settore medico o quello sportivo, dove non solo form follows function ma anche “function follows design” e “design follows materials [12]”.
L’obiettivo del progettista non è più semplicemente quello di applicare materiali innovativi per migliorare singoli disturbi di carattere sensoriale (ad esempio il rumore, la postura, ecc…), ma di sviluppare una personale e sinestetica coerenza multisensoriale: visiva, tattile, uditiva,olfattiva, termo-igrometrica, attraverso lo sviluppo di materiali ad hoc a partire dalla soluzione che si vuole ottenere: diffusione del suono, controllo della temperatura, illuminazione, integrazione delle funzioni, semplificazione, autoriparazione dei componenti, ecc.
E così il "pensiero creativo" si spinge fino ad agire sulla progettazione del materiale stesso (iperprogettualità), trasformandolo e utilizzandolo in funzione dell’idea di progetto e dando vita a caleidoscopi di possibilità che trasformeranno gli artefatti, che a loro volta modifieranno la nostra quotidianità. Questa possibilità di modificare la composizione chimica e fisica del materiale, di pensare ciò che non c’è ma che solo potrebbe essere, se da un lato è certamente esaltante, dall’altro è potenzialmente pericolosa perché permette di estendere il progetto al di là del possibile con gravi ricadute in primo luogo sulla sostenibilità. Sempre più facile apparirà superare il limite di ciò che esiste, piuttosto che tentare di governare ciò che già è, arrivando a spingere l’iperprogettualità nel campo della stessa materia e non permettendo al tempo di sedimentare la conoscenza e al design di incanalare la ricerca attraverso la creatività. Sempre più appare perciò evidente come in futuro dovremmo imparare ad utilizzare il pensiero creativo in modo più discreto, ovvero solo per rispondere a nostri reali bisogni che, per simmetria inversa con l’umana complessità, dovranno necessariamente tornare ad essere sempre più semplici. Molte rivoluzioni dettate da vere e proprie scoperte scientifiche rimangono oggi semplicemente “possibili” e forse non arriveranno mai a trasformarsi in artefatto, non trovando cioè un proprio uso specifico.
Il progetto si spinge dunque fino alla progettazione del materiale e del suo DNA grazie alle nanotecnologie, che si aggiungono oggi alle tradizionali lavorazioni alla scala “macro” (stampaggio, laminazione, fusione, verniciatura, ecc). Se dunque in passato era sufficiente osservare un materiale alla scala micro per scoprirne la plurimatericità, (le pelli di tessuto di carbonio, il cuore della sezione in nido d’ape di alluminio) e la sua struttura anisotropa (le fibre disposte nella direzione degli sforzi); oggi un artefatto realizzato con l’impiego delle nanotecnologie, osservato alla scala reale o a quella micro, non farà intravedere la sua complessità strutturale e sembrerà quasi monomaterico, rivelando la sua vera natura solo alla scala nano.
Al tempo stesso i materiali si fanno intelligenti, sembrano vibrare e rispondere agli stimoli esterni, come ad esempio avviene per le vernici termosensibili che cambiano aspetto al variare della temperatura o della luce; o per quelle soft-touch, gommosse o vellutate; ma anche per i tessuti, le trame tecniche, i laminati e i film lenticolari, materiali unici e con personalità spiccata, capaci di stimolare un’esperienza emozionale sempre nuova e diversa a seconda delle ore del giorno, della nostra vicinanza e addirittura del nostro stato d’animo. Materiali intelligenti perché carichi di un plus non solo di performance e di prestazioni, ma anche di espressività che rende più diretto l’approccio sensoriale con l’arteftato. Luci, suoni, odori, colori diventano essi stessi materia in grado di conferire comfort psicologico e dunque
anche fisico. Ciò rende evidente come, in generale, le tecnologie - non più separate dal processo progettuale o relegate a un arcano mondo del fare percepito come estraneo - consentano oggi di aprire nuove frontiere nei rapporti fra artificiale e naturale, fra oggetti d'uso e oggetti intelligenti, tra oggetti tecnici e oggetti del desiderio, tra uomo e ambiente, permettendo al "pensiero creativo" di spingersi fino a pensare ciò che non c’è, ma che solo potrebbe essere, aprendo la strada a nuove sperimentazioni vicine tanto alle dinamiche inerenti al mondo dell’arte, quanto a quello di sofisticate tecnologie spaziali. Le tecnologie non sono più considerate un puro utensile al servizio di un’idea, ma strumento di innovazione a cui “vengono oggi riconosciute caratteristiche di plasmabilità e di flessibilità tali da costituire una sorta di ‘intelligenza’ che permette al designer di divenire attore consapevole della propria scelta progettuale(…). Tanto che è diventato possibile raccontare il design contemporaneo attraverso il suo rapporto con le tecnologie e le loro applicazioni nei più svariati settori, primo fra tutti quello dei materiali.” Da qualsiasi prospettiva e a qualsivoglia scala la si guardi, l’innovazione tecnologica ha rivoluzionato la nostra vita, modificandola o addirittura trasformandola, con piccole-grandi rivoluzioni, ma anche con impercettibili trasformazioni che hanno ridefinito il nostro rapporto con le cose e con l’ambiente.

Resta adesso una questione da comprendere e cioè se la sapiente combinazione di più stimoli sensoriali, darà luogo ad una nuova forma di consumismo che ci renderà capaci di “consumare in modo più intenso” oltre che più veloce.

Bibliografia

[6] Il tatto è, per Aristotele, la “sensazione più necessaria”, anche se i sensi per eccellenza sono vista e soprattutto udito (Aristotele, Sull'anima (Πνεύματος), vol.I.

[8] Il Crossmodal Research Group del Dipartimento di Psicologia Sperimentale dell’Università di Oxford in Inghilterra, si occupa di valutare le “interazioni” tra i diversi sensi, per sperimentare il gradi di piacevolezza in termini assoluti e oggettivi.

