Nicosia’s city walls. The morphological attraction of city gates.

Alessandro Camiz *

* Department of Architecture, Girne American University, Kyrenia, Cyprus, alessandrocamiz@gau.edu.tr

Abstract

We know very about an early walled enclosure protecting Nicosia since Byzantine times. Later Henry I in 1211 built a castle to defend the city. Peter I started a complete city wall surrounding the city in 1368 and Peter I completed it in 1380. Janus I accomplished further works in 1426, and others were planned in 1450 following Nicholas V decision. In 1565, Giulio Savorgnna and Francesco Barbaro designed the new city walls demolishing the older ones. The paper analyses the case study of Nicosia, interpreting the ‘medievalisation’ process, in continuity between the Conzenian approach (Whitehand, 2012) and the Italian School of Urban Morphology (Marzot, 2002), (Maretto, 2013). The theory should cover in a more analytical manner what Muratori called ‘medievalisation’ (Muratori, 1959), (Caniggia, 1976) a term generically describing the transformation of urban routes occurring during the Middle Ages. The paper analyses the diachronic changes of routes in the city of Nicosia, Cyprus, and other multi-scalar occurrences of the attraction phenomenon (Charalambous, Geddes, 2015) applying attractors and repellers, already used in archaeological studies to interpret such changes. Only few routes change by attraction as revealed by the inflection analysis, other routes are instead bifurcated. The attractor causes the diachronic deformations of routes by pulling them away from their configuration, while the ‘repeller’ acts in the opposite direction. It is possible, therefore, to trace the path of the medieval walls of Nicosia, now disappeared, using the inflection analysis of urban routes, inferring the attractors and the diving lines. The Venetian city wall, determining a new dividing line and new gates acting as point attractors, can be analysed with the same methodology. The openings through those walls introduced in modern times, also seem to follow the very same morphological rules.

Keywords: urban morphology, history, military architecture

1. Theoretical premise

Recent urban morphology studies consider urban tissues as living organisms changing in time (Strappa, Carlotti, Camiz, 2016) the attractor theory is a new experimental tool of analysis in the urban morphology field following this assumption based on the notion of attractor as already used in archaeology. Archaeological studies already do consider attractors and repellers as a tool to interpret some territorial transformations, following the assumption that “the trajectory that a system follows through time is the result of a continuous dynamic interaction between that system and the multiple 'attractors' in its environment” (Renfrew, Bahn, 2013).

![Fig. 1- The medievalisation and diagonalisation process (Caniggia, 1979).](image-url)
Mathematics also use the notion of attractor as a set of numerical values stabilising a complex function in the long term. There is a number of studies in urban planning deriving the notion of attractor from the mathematic concept and applying it to the statistical study of settlement patterns. (Boeing, 2016). Some archaeologists have borrowed the theory of attractors from mathematics to explain cyclical or "strange" transformations using the point, limit cycle, toroidal, strange attractor division (McGlade, 1995), (McGlade, Van Der Leeuw, 1997). Space Syntax has introduced the term attractor to name an element attracting pedestrian movement, also the concepts of spatial layout attraction, land use attraction and transport attractions are defined therein. In that discipline an attractor is a building or any other feature with the potential of generating trips to and from. A negative attractor is instead an element decreasing the natural movement rates. (Hillier, Penn, Hanson, Grajewski, Xu, 1993). The attractor as defined in Space Syntax differs is useful for the explanation of this theory, as it refers to pedestrian movement and this movement, ad traffic in general, happens usually before the street itself is built. The built shape can thus be influenced by the configuration of its traffic as attracted in time.

2. Attraction and repellence.

The route, street or lane is a human artefact and it is possible to study it just like buildings and urban tissues. The level of permanence of routes is in general higher than that of buildings, also while

![Fig. 2- Trajectory of a route from pole 1 to antipole 2 as the shortest path.](image)

the most buildings are private (base buildings) and only few of them are collective (special buildings), routes instead are in general public and should be considered as collective artefacts. In the long term streets can tell much more history than buildings. The object of this research is analysing the planimetric configurations of the streets, by recognising typical configurations of the road form in urban environment and its diachronic changes due to the effect of the attractors. This method can be useful for different disciplines, such as archaeology, urban history, and urban planning. The attractor theory considers the deformations occurring in time to streets considered as artefacts. We can define an attractor an element that deviates a route from its previous configuration by attracting its traffic. A repeller is the inverse of an attractor, an element deforming the configuration of a path by repelling its traffic. A disappeared attractor now may be inferred with the formal analysis of the configuration of routes that have been attracted by it, determining a sort of diachronic urban stratigraphy, it is therefore possible to infer the presence, type and position of a former attractor by recognising the deformations of the routes that were attracted by it. Considering that the route pre-exists the settlement (Caniggia, 1963), the planimetric form of the route depends on a number of elements attracting and repelling its course from the shortest path. These elements, defined here as attractors and repellers, can appear, disappear, or even change position in time, determining through history the complex configuration of the route itself. The changing positions of the attractors and the changing strength of attraction can be recognised and used to interpret the phases of an urban settlement.

![Fig. 3- Trajectory of a route from pole 1 to antipole 2 as the shortest path.](image)

Once an attractor ceases to exist or ceases to attract, it may happen that the route returns to its unattracted configuration, but in urban areas this elasticity is reduced by the presence of urban tissues that tend to limit the possibility of
reversing the attraction phenomena, freezing therefore the attracted configuration. Attractors can be, point, linear, or shaped/areal Examples of point attractors are wells, city gates, bridges, fords, springs, and passes. Examples of linear attractors are instead city walls, rivers, seashores, lakeshores, canals, while shaped/areal attractors are buildings, infrastructures, rock formation, lakes. Attractors can be territorial or urban: some special buildings or urban functions may act as attractors, typically, markets, power seats (government buildings, local administration buildings), churches, monasteries, other religious buildings. The difference between a territorial and an urban attractor is only the urban environment, considering that the city, can change in time, so a territorial attractor can in a subsequent phase find itself inside a city, and on the other hand what was once an urban attractor could today be in an abandoned territory becoming thus territorial. Distinguishing between nodal and polar attraction, includes the notion of pole/antipole and node as defined in the Muratorian theory (Caniggia, Maffei, 1979). The attractor itself is not nodal or polar, but the attraction point can be nodal or polar in relation to how the different routes are converging there, a nodal attractor is determining a branching between two or more routes, while a polar or antipolar attractor determines the origin or destination of a route. Attraction can be deformed or undeformed, where a deformed attraction is visible in the local modified configuration, while routes that don’t have a local curvature converge in an undeformed attractor.

Fig. 4- Point attractor A inflects the linear trajectory of the shortest path determining inflection points f1 and f2.

Attractors and repellers can be simple or complex depending on how the effects of their action can be classified, either in a simple form or as the result of different forms merged together. Finally attractors and repellers can be anthropic or natural, depending if they are determined or not by human action. This classification is tentative, and is based on the observation of the attraction phenomena in the urban and territorial environments. The classification is useful to build a taxonomy of attraction cases, based on a binary set or parameters, to be used to recognise the type of attractor. So following the classification there could be an anthropic point nodal undeformed simple attractor, as well as a natural continuous deformed complex attractor. The mean character to be recognised in the road network, besides the road curvature and inflection, are the discontinuities in the track, the bifurcations, the intersections and the convergences.

3. Natural and anthropic attractors

The shortest path from one point to another is a straight line if the surface is flat, instead if the surface has a complex form it is the minimum energy path. In this case, the morphology of the site acts as an attractor to the route, deforming its theoretical straight shape. The first step in the construction of the theory consists in the classification of the natural attractors. The theory is based on the assumption that every anthropic attractor has an equivalent natural attractor.

Fig. 5- Evolution of a path for a point attractor A close to the path, the old shortest path (dashed line) is bifurcated in b1 and b2.

There are different elements that can act as attractors in an urban environment, such as bridges, city walls, city gates, water systems, markets, special buildings, and it is possible to consider each of these anthropic attractors as equivalent to a morphological attractor at the geographical scale. We can even interpret the ridge-top theory [5] as the result of attraction
and repellence of geographic features on anthropic routes. The territorial scale analysis is the methodological base of the theory, but the attractors herein considered operate at the urban scale, deviating locally across time from a rectilinear trajectory and defining therefore a specific urban fabric. A natural point attractor is as an example a ford: the position of the ford, which is in general independent form the morphological configuration of the territory, will deviate the routes following the ridge top theory so to cross the river in that specific point. The equivalent anthropic attractor is a bridge. While the ford in the human time scale probably does not change, and the deformation of the route from its theoretical shape is stable, in the case of the bridge, its existence and position can vary in time, so the deformation of the routes can be dynamic.

![Image](image1.png)

Fig. 6- F. Bertelli, J. F. Camotii, Partie orientale de Chypre, Venetiis, Romae 1562-1570, Bibliothèque Nationale de France, Département Cartes et plans, GE D-13952, detail.

![Image](image2.png)

Fig. 7- The insertion of a point attractor A along the path 1-3 merges the path 1-3 into the path 1-2, determining the bifurcation b1.

Recognising these deformations can help us to reconstruct a disappeared bridge. Other natural point attractor is the mountain pass, and its anthropic equivalent can be the city gate. The linear attractor is instead a continuous structure deforming a route to follow it. Natural continuous attractors are mountain ridges, riversides, lake and seashores. By generalising the ridge top theory, we can say that routes within certain conditions take the shape of the continuous attractors. In some case the same element attracting can act as a repeller in certain parts. As an example we can consider the ridge top that attracts the route, but if too sharp and steep, deviates the route from its edge (repeller) keeping it though close to it (attraction).

4. **Diachronic evolution of urban routes**

The research interprets and reads the effects of attractors on urban routes and fabrics as a method for the reconstruction of Nicosia’s medieval city walls. An ongoing research is aimed to the reconstruction of the different phases of Nicosia City walls. From the byzantine “circla”, to the later teichokastron, and the walls built by the Lusignans in the XIV century, by comparing them with coeval cases for each phase, such as Bononia (Guidoni, Zolla, 2000), the territorial routes around Cagliari (Cadinu, 1998) and the city of Como (Caniggia, 1963).

We based this reconstruction on the cross matching of historical sources, archaeological evidence and the Muratorian (Strappa, Ieva, Dimatteo, 2003), (Cataldi, Maffei, Vaccaro, 2002), (Ieva, 2015) urban morphology analysis methods. We are proposing this experimental case study for the development of the theory of attractors. The research on the medieval walls is not finished yet, so cannot be entirely presented here. Some preliminary considerations on the topography of Nicosia can be discussed as a first application of the theory. Following the analogy between the mountain pass and the city gate, it is possible to recognize the typical feature of the bifurcation of routes converging from the territory to the city gate.

![Image](image3.png)

Fig. 8- G.F. Camocio, Nicosia, Isole famose
porti, fortezze, e terre maritime sottoposte alla Ser.ma Sig.ria di Venetia, ad altri Principi Christiansi, alla libraria del segno di S. Marco, Venetia 1574, n. 72.
branching, intersections, and deformations from the straight form, interpreted diachronically,

This Y shaped bifurcation (cfr. Fig. 9) happens when the construction of new city walls and gates, forces a pre-existing street leading to the city centre to abandon its former configuration and merge outside of the city entrance with the other route that attracted the construction of the gate in that position. In this case, one of the routes is acting as an attractor for the position of the gate, and subsequently it is the gate acting as point attractor to the other routes. Therefore, it is possible to distinguish an undeformed route merging into the bifurcation, and a deformed one. We can recognise this configuration in the bifurcations outside of Porta Ravegnana in the medieval Bologna, in this case the Kardo of the roman Bononia, via Aemilia, continues undeformed outside of the roman city walls, while the other routes were attracted converging in the gate. The same phenomenon can happen inside the city, either because the urban tissue is not consolidated yet or with the restructuring of the former urban tissue. A good example of an inner bifurcation of routes for the city gate acting as attractor may be found in Porta del Popolo and the three streets via del Babuino, via Lata and via Ripetta. In this case the via Lata is the unattracted route, the other two, as determined in the XVI century with the Piano Sistino, were designed to converge in the square facing the city gate inside the city. By finding typical configuration of road bifurcations,

Fig. 9- Street bifurcations outside of Porta Ravegnana in medieval Bologna. Pianta della Città di Bologna, Atlante Geografico dell'Italia, Francesco Vallardi Editore, Milano 1868.

Fig. 10- Street bifurcations inside of Porta del Popolo in Rome, G.B. Nolli, Pianta grande di Roma, Rome 1748.

it is possible to construct an abacus of the attractors and repellers, and the deformations caused on the urban routes. With the analytical understanding of a very large number of cases and their explanation in theoretical terms, it will be possible to provide a substantial aid to the study of the history of cities in the middle ages: a historical phase of history that usually lacks documentation for the reconstruction of the urban environment.

5. Point attractors in Nicosia

The urban settlement of Nicosia started as Ledra in Bronze Age on the top of Agios Georgios hill, next to the river Pedieos (Kanli Dere), along the intersection of the valley route following that river, and the cross-valley route connecting the Pentadaktylos ridge and the Troodos ridge, and developed as an exchange point between the two sides of the river. Only in Byzantine times, in the X century, the city became the capital of the island, and a surrounding wall was added. After becoming archbishopal seat in 1212, the city grew larger. Nicosia was protected since Byzantine times by a walled enclosure of which very little is known. Later the city was defended by a castle built by Henry I in 1211. A complete city wall surrounding the city was started in 1368 by Peter I and completed by Peter II in
1380. Further works were accomplished by Janus I in 1426, and planned in 1450 following Nicholas V decision. The urban area reached a circumference of four miles, before the Venetian transformation of the city, reduced it to three miles (Mariti, 1792). In 1567, new walls, designed by the Venetian engineers Giulio Savorgnano and Francesco Barbaro, replaced the medieval ones. The construction of the new walls implied the destruction of the older walls, and the infilling of the river, moving its waters into a new moat surrounding the new city walls. A new urban tissue gradually replaced the riverbed, flanked by the sinuous streets that followed its former course inside the ancient city. In Nicosia the three existing bridges, where crossroads connected the two sides of the city, maintained their polar role after the river infilling. The Venetians might have not completed this urban transformation, hence the Ottoman siege of the city in 1570, but in continuity with the precedent administration the Ottoman renovation of the city, used some of the areas above the infilled river. Since then, this area become the city centre. The three bridges disappeared from the urban landscape once the river was infilled, but their trace is still readable in the network of urban routes. The bridges acted as attractors for the urban routes. The crossing point of a river determined by a bridge or a ford, acts definitely as a point attractor for the surrounding existing routes. What is singular is that the Ledra Street check point, the only crossing point of the buffer zone within the walled city of Nicosia, was opened in the same point were in ancient times one of the three bridges was; so the permanence of urban traces acted as a guide for the modern design process. After the opening of the checkpoint in 2008, in the same position of the ancient bridge, all the commercial activities of the walled city of Nicosia were attracted along that same urban axis of Ledra Street, showing a singular cyclical continuity in the attraction phenomenon. In the plan of Nicosia, it is possible to recognise through the inflection and bifurcation analysis a number of meaningful cases. We will propose just a few here, due to the lack of space. The construction of the Kyrenia gate in the end of the XVI century seems to have attracted the urban axis stemming from the third Royal Palace built in Lusignan times. Maybe in that time the urban tissue was not completed in that zone, and the palace within a fringe belt, was built at the limit of the built area. What is clearly visible in the plan is the attraction of the gate in relation to the urban route, the direction of the route was determined by the gate. It I possible to infer that the route developed after the XVI century. In the same area, it is possible to hypothesize the presence of a continuous attractor, surrounding the urban tissue, such as a city wall or a moat. On the western side of the city walls, the now called Paphos gate, inflects and bifurcates the outer routes, where the southern one is also deformed by the bastion, acting in this case a repeller. The opening of the Limassol gate in modern times the southern part of the Venetian city walls, attracted the outside routes, and was attracted by the internal ones (Fig. 12)
Fig. 11- The attraction of the three Venetian city gates of Nicosia on the external routes. (Cobham, 1908, p.87).

Fig. 12- Kitchener map of Nicosia, 1881. The opening of Limassol gate in the southern part of the Venetian city walls, attracts the outside routes, and is attracted by internal ones.

Fig. 13- Department of Lands and Survey, Topographical map of Nicosia and Environs, 1958. It is possible to read the attraction of the Venetian gates and the modern openings in the Venetian walls on the modern street network.
References

DEFENSIVE ARCHITECTURE OF THE MEDITERRANEAN XV to XVIII Centuries

Ángel Benigno GONZÁLEZ AVILÉS (Ed.)
DEFENSIVE ARCHITECTURE OF THE MEDITERRANEAN
XV TO XVIII CENTURIES
Vol. VI
DEFENSIVE ARCHITECTURE OF THE MEDITERRANEAN
XV TO XVIII CENTURIES
Vol. VI

Editor
Ángel Benigno González Avilés
Universidad de Alicante. Spain
FORTMED 2017

Colección Congresos UA

Los contenidos de esta publicación han sido evaluados por el Comité Científico que en ella se relaciona y según el procedimiento de la `revisión por pares`.

© editor
Ángel Benigno González Avilés

© de los textos: los autores

www.publicaciones.ua.es/

Imprime:

Depósito legal: A 494-2017

FORTMED – Modern Age Fortifications of the Mediterranean Coast, Alicante, October 26th, 27th, 28th 2017